Object Detection Api
Object Detection is part of Machine Learning , in which we use different algorithm to detect object in Image, Or Video files. Our algorithm can detect around 10K+ different objects.
Endpoint
POST - /ml/object-detection
Parameters
file
- required
- Type:
Image File is Required
- Max Size:
20MB
mode
- optional
- Type:
xywh
,xywhn
,xyxy
,xyxyn
- Default:
xyxyn
- Details: - based on mode, output will contain different fields related to object position
threshold
- optional
- Type: number between
1
to100
- Default:
40
- Details - threshold is number which defines confidence of object inside the image. Object with less confidence than threshold will get ignored in results
Example
Sample Image used
Request
curl --form "file=@detection-demo-file.jpg $BASE_ROUTE/ml/object-detection
Response with different Mode
{
"count": 3,
"data": [
{
"class": 0,
"confidence": 0.9367442131,
"name": "person",
"xmax": 0.7731372118,
"xmin": 0.1024992168,
"ymax": 0.7416218519,
"ymin": 0.1403899938
},
{
"class": 16,
"confidence": 0.9351310134,
"name": "dog",
"xmax": 1,
"xmin": 0.0016319321,
"ymax": 1,
"ymin": 0.6291618943
},
{
"class": 2,
"confidence": 0.7377066612,
"name": "car",
"xmax": 0.9993353486,
"xmin": 0.7337724566,
"ymax": 0.6310616732,
"ymin": 0.4480176568
}
],
"status": "done"
}
{
"count": 3,
"data": [
{
"class": 0,
"confidence": 0.9367442131,
"height": 619.8700561523,
"name": "person",
"width": 460.728302002,
"xcenter": 300.7811279297,
"ycenter": 454.6770935059
},
{
"class": 16,
"confidence": 0.9351310134,
"height": 382.3341064453,
"name": "dog",
"width": 685.8788452148,
"xcenter": 344.0605773926,
"ycenter": 839.8329467773
},
{
"class": 2,
"confidence": 0.7377066612,
"height": 188.7183837891,
"name": "car",
"width": 182.4417114258,
"xcenter": 595.3225097656,
"ycenter": 556.2653808594
}
],
"status": "done"
}
{
"count": 3,
"data": [
{
"class": 0,
"confidence": 0.9367442131,
"height": 0.601231873,
"name": "person",
"width": 0.6706379652,
"xcenter": 0.4378182292,
"ycenter": 0.4410059154
},
{
"class": 16,
"confidence": 0.9351310134,
"height": 0.3708381355,
"name": "dog",
"width": 0.9983680248,
"xcenter": 0.5008159876,
"ycenter": 0.8145809174
},
{
"class": 2,
"confidence": 0.7377066612,
"height": 0.1830440164,
"name": "car",
"width": 0.265562892,
"xcenter": 0.866553843,
"ycenter": 0.5395396352
}
],
"status": "done"
}
{
"count": 3,
"data": [
{
"class": 0,
"confidence": 0.9367442131,
"name": "person",
"xmax": 531.1452636719,
"xmin": 70.4169616699,
"ymax": 764.612121582,
"ymin": 144.7420806885
},
{
"class": 16,
"confidence": 0.9351310134,
"name": "dog",
"xmax": 687,
"xmin": 1.1211373806,
"ymax": 1031,
"ymin": 648.6658935547
},
{
"class": 2,
"confidence": 0.7377066612,
"name": "car",
"xmax": 686.5433959961,
"xmin": 504.1016845703,
"ymax": 650.6245727539,
"ymin": 461.9061889648
}
],
"status": "done"
}